Variations of Two Classical Turdn-Type Extremal Results

Jian-Hua Yin1, Jiong-Sheng Li2
1Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.
2Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Abstract

We consider a variation of a classical Turán-type extremal problem due to Bollobás \([2,p. 398, no. 13]\) as follows: determine the smallest even integer \(\sigma(C^k,n)\) such that every graphic sequence \(\pi = (d_1,d_2,\ldots,d_n)\) with term sum \(\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(C^k,n)\) has a realization \(G\) containing a cycle with \(k\) chords incident to a vertex on the cycle. Moreover, we also consider a variation of a classical Turán-type extremal result due to Faudree and Schelp \([7]\) as follows: determine the smallest even integer \(\sigma(P_\ell,n)\) such that every graphic sequence \(\pi = (d_1,d_2,\ldots,d_n)\) with \(\sigma(\pi) \geq \sigma(P_\ell,n)\) has a realization \(G\) containing \(P_\ell\) as a subgraph, where \(P_\ell\) is the path of length 2. In this paper, we determine the values of \(\sigma(P_\ell,n)\) for \(n \geq \ell+1\) and the values of \(\sigma(C^k,n)\) for \(n \geq (k+3)(2k+5)\).