Let \(\Gamma\) be a \(d\)-bounded distance-regular graph with diameter \(d \geq 3\) and with geometric parameters \((d, b, \alpha)\). Pick \(x \in V(\Gamma)\), and let \(P(x)\) be the set of all subspaces containing \(x\). Suppose \(P(x, m)\) is the set of all subspaces in \(P(x)\) with diameter \(m\), where \(1 \leq m < d\). Define a graph \(\Gamma'\) whose vertex-set is \(P(x, m)\), and in which \(\Delta_1\) is adjacent to \(\Delta_2\) if and only if \(d(\Delta_1 \cap \Delta_2) = m – 1\). We prove that \(\Gamma'\) is a distance-regular graph and compute its intersection numbers.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.