The Total Number of Matchings in Triangle Graph of a Connected Graph

Hongbo Hua1,2, Libing Zhang1
1Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an, Jiangsu 223003, PR China
2Department of Mathematics, Nanjing University, Nanjing 210093, PR China

Abstract

For a graph \(G\), let \({Z}(G)\) be the total number of matchings in \(G\). For a nontrivial graph \(G\) of order \(n\) with vertex set \(V(G) = \{v_1, \ldots, v_n\}\), Cvetković et al. \([2]\) defined the triangle graph of \(G\), denoted by \(R(G)\), to be the graph obtained by introducing a new vertex \(v_{ij}\) and connecting \(u_{ij}\) both to \(v_i\) and to \(v_j\) for each edge \(v_iv_j\) in \(G\). In this short paper, we prove that for a connected graph \(G\), if \({Z}(R(G)) \geq (\frac{1}{2}n-\frac{1}{2}+\frac{5}{2n})^2\), then \(G\) is traceable. Moreover, for a connected graph \(G\), we give sharp upper bounds for \({Z}(R(G))\) in terms of clique number, vertex connectivity, and spectral radius of \(G\), respectively.