The hub-integrity of a graph is given by the minimum of \( |S| + m(G – S) \), where \( S \) is a hub set and \( m(G – S) \) is the maximum order of the components of \( G – S \). In this paper, the concept of hub edge-integrity is introduced as a new measure of the stability of a graph \( G \), and it is defined as \(HEI(G) = \min\{|S| + m(G – S)\},\) where \( S \) is an edge hub set and \( m(G – S) \) is the order of a maximum component of \( G – S \). Furthermore, an \( HEI \)-set of \( G \) is any set \( S \) for which this minimum is attained. Several properties and bounds on the \( HEI \) are presented, and the relationship between \( HEI \) and other parameters is investigated. The \( HEI \) of some classes of graphs is also computed.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.