Chromatic Uniqueness of Complete Bipartite Graphs With Certain Edges Deleted

H. Roslan1, Y.H. Peng1
1Department of Mathematics and Institute for Mathematical Research University Putra Malaysia 43400UPM Serdang, Malaysia

Abstract

For integers \(p, q, s\) with \(p \geq q \geq 3\) and \(1 \leq s \leq q-1\), let \(\mathcal{K}^{-s}{p,q}\) (resp. \(\mathcal{K}_2^{-s}{p,q}\)) denote the set of connected (resp. 2-connected) bipartite graphs which can be obtained from \(K_{p,q}\) by deleting a set of \(s\) edges. In this paper, we prove that for any \(G \in \mathcal{K}_2^{-s}{p,q}\) with \(p \geq q \geq 3\), if \(9 \leq s \leq q-1\) and \(\Delta(G’) = s-3\) where \(G’ = K_{p,q} – G\), then \(G\) is chromatically unique.