Isoperimetric Edge Connectivity of Line Graphs and Path Graphs

Zhao Zhang1, Fengxia Liu1
1College of Mathematics and System Sciences, Xinjiang University Urumai, Xinjiang, 830046, People’s Republic of China

Abstract

The \(k\)-th isoperimetric edge connectivity \(\gamma_k(G) = \min\{|[U,\overline{U}]| : U \subset V(G), |U| \geq k\}\). A graph \(G\) with \(\gamma_k(G) = \beta_k(G)\) is said to be \(\gamma_k\)-optimal, where \(\beta_k(G) = \min\{|[U,\overline{U}]| : U \subset V(G), |U| = k\}\). Let \(G\) be a connected \(d\)-regular graph. Write \(L(G)\) and \(P_2(G)\) the line graph and the 2-path graph of \(G\), respectively. In this paper, we derive some sufficient conditions for \(L(G)\) and \(P_2(G)\) to be \(\gamma_k\)-optimal.