We prove that every connected subcubic graph G has two spanning trees \(T_1,T_2\) such that every component of \(G – E(T_1)\) is a path of length at most \(3\), and every component of \(G – E(T_2)\) is either a path of length at most \(2\) or a cycle.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.