On Cycle Resonant Outerplanar Graphs

Xiaofeng Guo1, Zhixia Xu1,2
1College of Mathematics and System Sciences, Xinjiang University, Wulumuqi Xinjiang, 830046, P.R. China
2Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China

Abstract

A connected graph \(G\) is \({k-cycle \; resonant}\) if, for \(0 \leq t \leq k\), any \(t\) disjoint cycles \(C_1, C_2, \ldots, C_t\) in \(G\) imply a perfect matching in \(G – \bigcup_{i=1}^{t} V(C_i)\). \(G\) is \({cycle \; resonant}\) if it is \(k^*\)-cycle resonant, where \(k^*\) is the maximum number of disjoint cycles in \(G\). This paper proves that for outerplane graphs, \(2\)-cycle resonant is equivalent to cycle resonant and establishes a necessary and sufficient condition for an outerplanar graph to be cycle resonant. We also discuss the structure of \(2\)-connected cycle resonant outerplane graphs. Let \(\beta(G)\) denote the number of perfect matchings in \(G\). For any \(2\)-connected cycle resonant outerplane graph \(G\) with \(k\) chords, we show \(k+2 \leq \Phi(G) \leq 2^k + 1\) and provide extremal graphs for these inequalities.