In this paper two authentication codes with multiple arbiters are constructed to protect the communication system against the attacks from the opponent, transmitter, receiver and dishonest arbiters. The first construction takes advantage of set theory to give an authentication codes with two arbiters that resists collusion attacks from dishonest arbiters and participators availably. The second construction makes full use of of Reed- Solomon-code (\(RS\)-code) and \((k, n)\)-threshold scheme to give an authentication codes with \(n\) arbiters that effectively prevents multiple arbiters from cheating.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.