The harmonic index of a graph \(G\) is defined as the sum of weights Tay raey of all edges \(uv\) of \(G\), where \(d(u)\) and \(d(v)\) are the degrees of the vertices \(u\) and \(v\) in \(G\), respectively. In this paper, we give a sharp lower bound on the harmonic index of trees with a perfect matching in terms of the number of vertices. A sharp lower bound on the harmonic index of trees with a given size of matching is also obtained.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.