Extremal Polyphenyl Spiders Concerning \(k\)-matchings and \(k\)-independent Sets

Xiaoling Ma1, Hong Bian2, Haizheng Yu1
1College of Mathematics and System Sciences, Xinjiang University, Urumai 830046, P.R.China
2School of Mathematical Science, Xinjiang Normal University, Urumai 830054, P.R.China

Abstract

Denote by \(\mathcal{P}(n_1, n_2, n_3)\) the set of all polyphenyl spiders with three legs of lengths \(n_1\), \(n_2\), and \(n_3\). Let \(S^j(n_1, n_2, n_3) \in \mathcal{P}(n_1, n_2, n_3)\) (\(j \in \{1, 2, 3\}\)) be three non-isomorphic polyphenyl spiders with three legs of lengths \(n_1\), \(n_2\), and \(n_3\), and let \(m_k(G)\) and \(i_k(G)\) be the numbers of \(k\)-matchings and \(k\)-independent sets of a graph \(G\), respectively. In this paper, we show that for any \(S^j(n_1, n_2, n_3) \in \mathcal{P}(n_1, n_2, n_3)\) (\(j \in \{1, 2, 3\}\)), we have \(m_k(S_M^3(n_1, n_2, n_3)) \leq m_k(S^j(n_1, n_2, n_3)) \leq m_k(S^j(n_1, n_2, n_3))\) and \(i_k(S_O^1(n_1, n_2, n_3)) \leq i_k(S^j(n_1, n_2, n_3)) \leq i_k(S^3_M(n_1, n_2, n_3))\), with equalities if and only if \(S^j(n_1, n_2, n_3) = S_M^3(n_1, n_2, n_3)\) or \(S^j(n_1, n_2, n_3) = S_O^1(n_1, n_2, n_3)\), where \(S_O^1(n_1, n_2, n_3)\) and \(S_M^3(n_1, n_2, n_3)\) are respectively an ortho-polyphenyl spider and a meta-polyphenyl spider.