Bounds of Eigenvalues of a Nontrivial Bipartite Graph

Hong-Jian Lai1, Bolian Liu2, Ju Zhou3
1Department of Mathematics, West Virginia University, Morgantown, WV 26506
2Department of Mathematics, South China Normal University, Guangzhou, 510631, P. R. China
3Department of Mathematics and Computer Science, Bridgewater State Col- lege, Bridgewater, MA, 02325

Abstract

Let \(G\) be a simple graph with \(n\) vertices and \(m\) edges, and let \(\lambda_1\) and \(\lambda_2\) denote the largest and second largest eigenvalues of \(G\). For a nontrivial bipartite graph \(G\), we prove that:
(i) \(\lambda_1 \leq \sqrt{m – \frac{3-\sqrt{5}}{2}}\), where equality holds if and only if \(G \cong P_4\);
(ii) If \(G \ncong P_n\), then \(\lambda_1 \leq \sqrt{{m} – (\frac{5-\sqrt{17}}{2})}\), where equality holds if and only if \(G \cong K_{3,3} – e\);
(iii) If \(G\) is connected, then \(\lambda_2 \leq \sqrt{{m} – 4{\cos}^2(\frac{\pi}{n+1})}\), where equality holds if and only if \(G \cong P_{n,2} \leq n \leq 5\);
(iv) \(\lambda_2 \geq \frac{\sqrt{5}-1}{2}\), where equality holds if and only if \(G \cong P_4\);
(v) If \(G\) is connected and \(G \ncong P_n\), then \(\lambda_2 \geq \frac{5-\sqrt{17}}{2}\), where equality holds if and only if \(G \cong K_{3,3} – e\).