A partition of an integer \(n\) is a representation \(n = a_1 + a_2 + \cdots + a_k\), with integer parts \(a_1 \geq a_2 \geq \cdots \geq a_k \geq 1\). The Durfee square is the largest square of points in the graphical representation of a partition. We consider generating functions for the sum of areas of the Durfee squares for various different classes of partitions of \(n\). As a consequence, interesting partition identities are derived. The more general case of Durfee rectangles is also treated, as well as the asymptotic growth of the mean area over all partitions of \(n\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.