Max-Min Total Restrained Domination Number

K.M. Koux1, Zeinab Maleki2, Behnaz Omoomi2
1Department of Mathematics National University of Singapore Singapore 117543, Singapore
2Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran

Abstract

Let \(G\) be a graph with vertex set \(V\). A set \(D \subseteq V\) is a total restrained dominating set of \(G\) if every vertex in \(V\) has a neighbor in \(D\) and every vertex in \(V-D\) has a neighbor in \(V-D\). The minimum cardinality of a total restrained dominating set of \(G\) is called the total restrained domination number of \(G\), denoted by \(\gamma_{tr}(G)\). Cyman and Raczek \((2006)\) showed that if \(G\) is a connected graph of order \(n\) and minimum degree \(\delta\) such that \(2 \leq \delta \leq n-2\), then \(\gamma_{tr}(G) \leq n-\delta\). In this paper, we first introduce the concept of max-min total restrained domination number, denoted by \(\gamma_{tr}^M(G)\), of \(G\), and extend the above result by showing that \(\gamma_{tr}^M(G) \leq \gamma_{tr}(G) \leq n-\delta\). We then proceed to establish that \((1)\) \(\gamma_{tr}^M(G) \leq n-2\delta\) if \(n \geq 11\) and \(G\) contains a cut-vertex, and \((2)\) \(\gamma_{tr}(G) \leq n-4\) if \(n \geq 11\) and \(\delta \geq 2\).