Let \(G\) be a graph with vertex set \(V\). A set \(D \subseteq V\) is a total restrained dominating set of \(G\) if every vertex in \(V\) has a neighbor in \(D\) and every vertex in \(V-D\) has a neighbor in \(V-D\). The minimum cardinality of a total restrained dominating set of \(G\) is called the total restrained domination number of \(G\), denoted by \(\gamma_{tr}(G)\). Cyman and Raczek \((2006)\) showed that if \(G\) is a connected graph of order \(n\) and minimum degree \(\delta\) such that \(2 \leq \delta \leq n-2\), then \(\gamma_{tr}(G) \leq n-\delta\). In this paper, we first introduce the concept of max-min total restrained domination number, denoted by \(\gamma_{tr}^M(G)\), of \(G\), and extend the above result by showing that \(\gamma_{tr}^M(G) \leq \gamma_{tr}(G) \leq n-\delta\). We then proceed to establish that \((1)\) \(\gamma_{tr}^M(G) \leq n-2\delta\) if \(n \geq 11\) and \(G\) contains a cut-vertex, and \((2)\) \(\gamma_{tr}(G) \leq n-4\) if \(n \geq 11\) and \(\delta \geq 2\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.