Arctangent Series on Pell and Pell-Lucas Polynomials via Cassini-Like Formulae

Dongwei Guo1, Wenchang Chu2
1School of Economics and Management, Nanjing University of Science and Technology, Nanjing (Jiangsu) 210094, China.
2School of Mathematics and Statistics, Zhoukou Normal University, Henan, China.

Abstract

By combining the telescoping method with Cassini–like formulae, we evaluate, in closed forms, four classes of sums about products of two arctangent functions with their argument involving Pell and Pell–Lucas polynomials. Several infinite series identities for Fibonacci and Lucas numbers are deduced as consequences.

Keywords: Arctangent function, Cassini formula, Binet form, Fibonacci and lucas numbers, Pell and Pell-lucas polynomials

1. Introduction

Pell and Pell–Lucas polynomials are defined (Horadam and Mahon [1] and Mahon and Horadam [2]) by the recurrence relations Pn(x)=2xPn1(x)+Pn2(x),Qn(x)=2xQn1(x)+Qn2(x); with different initial conditions P0(x)=0andP1(x)=1,Q0(x)=2andQ1(x)=2x. The Binet forms for these polynomials read as Pn(x)=αnβnαβandQn(x)=αn+βn where α:=α(x)=x+x2+1andβ:=β(x)=xx2+1.

They are polynomial extensions of Fibonacci and Lucas numbers Pn(12)=FnandQn(12)=Ln as well as Pell and Pell–Lucas numbers Pn(1)=PnandQn(1)=Qn.

Like the well–known Fibonacci and Lucas numbers, the Pell and Pell–Lucas polynomials have many amazing properties and important applications in combinatorics and number theory as well as physical sciences (cf. Koshy [3, 4]). There exist numerous identities about Fibonacci and Lucas numbers (cf. [5, 6, 7, 8]). Some of them are extended by Mahon and Horadam [2] and Melham and Shanno [9] to the summation formulae containing a single arctangent function with its argument being Pell and Pell–Lucas polynomials. In view of their importance, it is natural to examine the product sums of two arctangent functions with their arguments involving Pell and Pell–Lucas polynomials. That is the primary motivation for the present work.

Recall the Cassini formula for Fibonacci numbers Fn+1Fn1=(1)n+Fn2. There are two analogous ones for Pell and Pell–Lucas polynomials. They will be employed in this paper to evaluate, in closed forms, four classes of sums about products of two arctangent functions. The main techniques to realize this purpose consist of the telescopic approach (cf. [10]) and the following two trigonometric relations (1)arctanx+arctany=arctanx+y1xy,(xy<1);(2)arctanxarctany=arctanxy1+xy,(xy>1).

Throughout the paper, we assume that x is real with x>0, since otherwise, x<0 will result essentially in exchanging α(x) and β(x). Consequently the following zero limits 0=limnαn(x)=limnarctanαn(x)=limnβn(x)=limnarctanβn(x) will be utilized frequently to deduce limiting relations without specific explanations.

2. The First Class of Summation Formulae

By making use of the following formulae (cf. Koshy [4]§14.7) for Pell polynomials Pk1(x)+Pk+1(x)=Qk(x),Pk1(x)Pk+1(x)=Pk2(x)+(1)k; it is not difficult to deduce from (1) and (2) (3)arctanQk(x)Pk2(x)+(1)k1=arctan1Pk1(x)+arctan1Pk+1(x),(4)arctan2xPk(x)Pk2(x)+(1)k+1=arctan1Pk1(x)arctan1Pk+1(x).

They were directly utilized by Mahon and Horadam [2] and Melham and Shannon [9] to establish k=1n(1)k1arctanQ2k(x)P2k2(x)=π4(1)narctan1P2n+1(x)andk=1narctan2xP2k1(x)=π21P2n(x). Instead, we shall utilize both (3) and (4) to derive further summation formulae concerning products of two arctangent functions.

2.1

Replacing k by 2k, we can rewrite (3) and (4) as arctan1P2k1(x)+arctan1P2k+1(x)=arctanQ2k(x)P2k2(x),arctan1P2k1(x)arctan1P2k+1(x)=arctan2xP2k(x)P2k2(x)+2. Their multiplication gives rise to k=1narctanQ2k(x)P2k2(x)arctan2xP2k(x)P2k2(x)+2=k=1n(arctan21P2k1(x)arctan21P2k+1(x)). Then summing this equation for k from 1 to n by telescoping, we find the following formula.

Theorem 1 (x>0). k=1narctanQ2k(x)P2k2(x)arctan2xP2k(x)P2k2(x)+2=π216arctan21P2n+1(x).

Its limiting case as n yields a remarkable series whose sum is independent of x.

Corollary 1 (Independent of x). k=1arctanQ2k(x)P2k2(x)arctan2xP2k(x)P2k2(x)+2=π216.

By specifying particular values of x, we can derive, from the above corollary, a number of infinite series identities. Eight of them are highlighted as follows.

  • x=12=L12: (5)k=1arctanL2kF2k2arctanF2kF2k2+2=π216.

  • x=52=52F2: (6)k=1arctan9L4k5F4k2arctan15F4k5F4k2+18=π216.

  • x=2=L32: (7)k=1arctan4L6kF6k2arctan8F6kF6k2+8=π216.

  • x=352=52F4: (8)k=1arctan49L8k5F8k2arctan105F8k5F8k2+98=π216.

  • x=1=Q12: (9)k=1arctanQ2kP2k2arctan2P2kP2k2+2=π216.

  • x=22=2P2: (10)k=1arctan9Q4k2P4k2arctan24P4k2P4k2+18=π216.

  • x=7=Q32: (11)k=1arctan25Q6kP6k2arctan70P6kP6k2+50=π216.

  • x=122=2P4: (12)k=1arctan289Q8k2P8k2arctan408P8kP8k2+289=π216.

Alternatively, (3) and (4) can be restated under the replacement k by 2k1 as arctan1P2k2(x)+arctan1P2k(x)=arctanQ2k1(x)P2k12(x)2,arctan1P2k2(x)arctan1P2k(x)=arctan2xP2k1(x). First summing their product for k from 2 to n by telescoping and then adding the initial term arctan22x corresponding to k=1 to the resultant equation, we get the theorem below.

Theorem 2 (x>2140.321797). k=1narctanQ2k1(x)P2k12(x)2arctan2xP2k1(x)=π24πarctan2xarctan21P2n(x).

Now letting n in this theorem, we deduce the infinite series identity.

Corollary 2. (13)k=1arctanQ2k1(x)P2k12(x)2arctan2xP2k1(x)=π24πarctan2x.

We record eight interesting formulae by choosing particular values of x in this identity.

  • x=12=L12: (14)k=1arctanL2k1F2k122arctan1F2k1=0.

  • x=52=52F2: (15)k=1arctan95F4k2L4k2218arctan35L4k2=π24πarctan5.

  • x=2=L32: (16)k=1arctan4L6k3F6k328arctan8F6k3=π24πarctan4.

  • x=352=52F4: (17)k=1arctan495F8k4L8k4298arctan215L8k4=π24πarctan35.

  • x=1=Q12: (18)k=1arctanQ2k1P2k122arctan2P2k1=π24πarctan2.

  • x=22=2P2: k=1arctan722P4k2Q4k2272arctan242Q4k2=π24πarctan42.

  • x=7=Q32: (19)k=1arctan25Q6k3P6k3250arctan70P6k3=π24πarctan14.

  • x=122=2P4: (20)k=1arctan23122P8k4Q8k422312arctan8162Q8k4=π24πarctan242.

3. The Second Class of Summation Formulae

Analogously, there are also two formulae (cf. Koshy [4]§14.7) for Pell–Lucas polynomials Qk1(x)+Qk+1(x)=4(x2+1)Pk(x),Qk1(x)Qk+1(x)=Qk2(x)+4(1)k1(x2+1). In view of (1) and (2), we have the addition and difference formulae (21)arctan1Qk1(x)+arctan1Qk+1(x)=arctan4(x2+1)Pk(x)Qk2(x)4(1)k(x2+1)1,(22)arctan1Qk1(x)arctan1Qk+1(x)=arctan2xQk(x)Qk2(x)4(1)k(x2+1)+1. The last relation can directly be employed, by telescoping, to evaluate simple sums of a single arctangent function that we shall not reproduce. Instead, we shall concentrate on the sums containing products of two arctangent functions.

3.1

Replacing k by 2k, we can rewrite (21) and (22) as arctan4(x2+1)P2k(x)Q2k2(x)4x25=arctan1Q2k1(x)+arctan1Q2k+1(x),arctan2xQ2k(x)Q2k2(x)4x23=arctan1Q2k1(x)arctan1Q2k+1(x). Then summing their product for k from 1 to n leads us to the following theorem.

Theorem 3 (x>13380.275125). k=1narctan4(x2+1)P2k(x)Q2k2(x)4x25arctan2xQ2k(x)Q2k2(x)4x23 =arctan212xarctan21Q2n+1(x).

When n, the above theorem gives rise to the infinite series evaluation below.

Corollary 3. k=1arctan4(x2+1)P2k(x)Q2k2(x)4x25arctan2xQ2k(x)Q2k2(x)4x23=arctan212x.

As applications, we collect six infinite series identities.

  • x=12=L12: (23)k=1arctan5F2kL2k26arctanL2kL2k24=π216.

  • x=52=52F2: (24)k=1arctan35F4kL4k210arctan5L4kL4k28=arctan255.

  • x=2=L32: (25)k=1arctan10L6kL6k221arctan4L6kL6k219=arctan214.

  • x=1=Q12: (26)k=1arctan8P2kQ2k29arctan2Q2kQ2k27=arctan212.

  • x=22=2P2: (27)k=1arctan122P4kQ4k237arctan42Q4kQ4k235=arctan228.

  • x=7=Q32: (28)k=1arctan40P6kQ6k2201arctan14Q6kQ6k2199=arctan2114.

Under the replacement k by 2k1, the two equalities in (21) and (22) become arctan1Q2k2(x)+arctan1Q2k(x)=arctan4(x2+1)P2k1(x)Q2k12(x)+4x2+3,arctan1Q2k2(x)arctan1Q2k(x)=arctan2xQ2k1(x)Q2k12(x)+4x2+5. Multiplying them and summing for k from 1 to n by telescoping, we obtain the formula below.

Theorem 4. k=1narctan4(x2+1)P2k1(x)Q2k12(x)+4x2+3arctan2xQ2k1(x)Q2k12(x)+4x2+5 =arctan212arctan21Q2n(x).

Its limiting case as n yields the infinite series evaluation.

Corollary 4 (Independent of x). k=1arctan4(x2+1)P2k1(x)Q2k12(x)+4x2+3arctan2xQ2k1(x)Q2k12(x)+4x2+5=arctan212.

In particular, two infinite series identities are given as follows:

  • x=1/2: (29)k=1arctan5F2k1L2k12+4arctanL2k1L2k12+6=arctan212.

  • x=1: (30)k=1arctan8P2k1Q2k12+7arctan2Q2k1Q2k12+9=arctan212.

4. The Third Class of Summation Formulae

By combining the Cassini–like formula (cf. Koshy [4]§14.10) (31)Pk2(x)Pk+λ(x)Pkλ(x)=(1)k+λPλ2(x) with (1) and (2), we get the following two identities (32)arctanPk(x)Pk+λ(x)+arctanPkλ(x)Pk(x)={arctan2Pk2(x)(1)kPλ2(x)Pλ(x)P2k(x),λeven;arctan2Pk2(x)+(1)kPλ2(x)Qλ(x)Pk2(x),λodd;(33)arctanPk(x)Pk+λ(x)arctanPkλ(x)Pk(x)={arctan(1)kPλ2(x)Qλ(x)Pk2(x),λeven;arctan(1)k+1Pλ(x)P2k(x),λodd. By means of (33), Melham–Shannon [9] obtained directly k=1narctan(1)k1P2k(x)=arctanPn(x)Pn+1(x). Now we are going to examine sums for the products of two arctangent functions.

4.1

When λ=1, rewriting (32) and (33) as arctanPk(x)Pk+1(x)arctanPk1(x)Pk(x)=arctan(1)k+1P2k(x),arctanPk(x)Pk+1(x)+arctanPk1(x)Pk(x)=arctan2Pk2(x)+(1)k2xPk2(x); and then summing their product for k from 1 to n by telescoping, we get the summation formula.

Theorem 5. k=1narctan2Pk2(x)+(1)k2xPk2(x)arctan(1)k+1P2k(x)=arctan2Pn(x)Pn+1(x).

Its limiting case as n results in the infinite series identity.

Corollary 5. k=1arctan2Pk2(x)+(1)k2xPk2(x)arctan(1)k+1P2k(x)=arctan2(x2+1x).

Two formulae about Fibonacci numbers and Pell numbers are contained as special cases.

  • x=1/2: (34)k=1arctan2Fk2+(1)kFk2arctan(1)k+1F2k=14arctan22.

  • x=1: (35)k=1arctan2Pk2+(1)k2Pk2arctan(1)k+1P2k=π264.

4.2.

Analogously for λ=2, both (32) and (33) become arctanPk(x)Pk+2(x)arctanPk2(x)Pk(x)=arctan2(1)kx2(2x2+1)Pk2(x),arctanPk(x)Pk+2(x)+arctanPk2(x)Pk(x)=arctanPk2(x)2(1)kx2xP2k(x). Keeping in mind that P1(x)=1 and then summing their product for k from 1 to n, we find by telescoping another formula as in the following theorem.

Theorem 6. k=1narctanPk2(x)2(1)kx2xP2k(x)arctan2(1)kx2(2x2+1)Pk2(x) =arctan2Pn1(x)Pn+1(x)+arctan2Pn(x)Pn+2(x)π216.

The limiting case as n is given by the following corollary.

Corollary 6. k=1arctanPk2(x)2(1)kx2xP2k(x)arctan2(1)kx2(2x2+1)Pk2(x)=2arctan2β2π216.

In particular, we record two identities about Fibonacci and Pell numbers.

  • x=1/2: (36)k=1arctan2Fk2(1)kF2karctan(1)k3Fk2=12arctan225π216.

  • x=1: (37)k=1arctanPk22(1)kP2karctan2(1)k3Pk2=12arctan24π216.

5. The Fourth Class of Summation Formulae

In this section, the counterpart formulae for Q(x) will be worked out by employing another Cassini–like formula (cf. Koshy [4]§14.10) (38)Qk+λ(x)Qkλ(x)Qk2(x)=4(1)k+λ(1+x2)Pλ2(x) as well as two reformulated ones by (1) and (2): (39)arctanQk(x)Qk+λ(x)+arctanQkλ(x)Qk(x)={arctan2Qk2(x)+(1)k(Qλ2(x)4)4(x2+1)Pλ(x)P2k(x),λeven;arctan2Qk2(x)(1)k(Qλ2(x)+4)Qλ(x)Qk2(x),λodd;(40)arctanQk(x)Qk+λ(x)arctanQkλ(x)Qk(x)={arctan(1)k(4Qλ2(x))Qλ(x)Qk2(x),λeven;arctan(1)k(4+Qλ2(x))4(x2+1)Pλ(x)P2k(x),λodd;

5.1.

Letting λ=1 in (39) and (40), we have arctanQk(x)Qk+1(x)+arctanQk1(x)Qk(x)=arctanQk2(x)2(1)k(x2+1)xQk2(x),arctanQk(x)Qk+1(x)arctanQk1(x)Qk(x)=arctan(1)kP2k(x). Multiplying them and then summing the resultant expression for k from 1 to n, we find by telescoping the formula below.

Theorem 7. k=1narctan(1)kP2k(x)arctanQk2(x)2(1)k(x2+1)xQk2(x)=arctan2Qn(x)Qn+1(x)arctan21x.

As n, the limiting result evaluates the following infinite series.

Corollary 7. k=1arctan(1)kP2k(x)arctanQk2(x)2(1)k(x2+1)xQk2(x)=arctan2(x2+1x)arctan21x.

Two special cases are produced below as examples

  • x=1/2: (41)k=1arctan(1)kF2karctan2Lk25(1)kLk2=34arctan22.

  • x=1: (42)k=1arctan(1)kP2karctanQk24(1)kQk2=3π264.

5.2.

Analogously for λ=2, we have from (39) and (40) arctanQk(x)Qk+2(x)+arctanQk2(x)Qk(x)=arctanQk2(x)+8(1)k(x4+x2)4(x3+x)P2k(x)arctanQk(x)Qk+2(x)arctanQk2(x)Qk(x)=arctan8(1)k+1(x4+x2)(2x2+1)Qk2(x). Summing their product for k from 1 to n and taking into account Q1(x)=2x, we get, after some simplifications, the following formula.

Theorem 8. k=1narctan8(1)k+1(x4+x2)(2x2+1)Qk2(x)arctanQk2(x)+8(1)k(x4+x2)4(x3+x)P2k(x) =arctan2Qn(x)Qn+2(x)+arctan2Qn1(x)Qn+1(x)arctan22Q2(x)π216.

Letting n in this theorem, we get the infinite series evaluation.

Corollary 8. k=1arctan8(1)k+1(x4+x2)(2x2+1)Qk2(x)arctanQk2(x)+8(1)k(x4+x2)4(x3+x)P2k(x)=2arctan2β2arctan212x2+1π216.

This formula further implies the two infinite series identities.

  • x=1/2: (43)k=1arctan5(1)k+13Lk2arctan2Lk2+5(1)k5F2k=12arctan225arctan223π216.

  • x=1: (44)k=1arctan16(1)k+13Qk2arctanQk2+16(1)k8P2k=12arctan224arctan213π216.

Conflict of Interest

The authors declare no conflict of interest.

References:

  1. Horadam, A.F. and Mahon, J.M., 1985. Pell and pell-lucas polynomials. Fibonacci Quart, 23(1), pp.7-20.[Google Scholor]
  2. Mahon, B.J.M. and Horadam, A.F., 1985. Inverse trigonometrical summation formulas involving Pell polynomials. Fibonacci Quarterly, 23(4), pp.319-324.[Google Scholor]
  3. Koshy, T., 2001. Fibonacci and Lucas Numbers with Applications. John Wiley & Sons.[Google Scholor]
  4. Koshy, T., 2014. Pell and Pell-Lucas Numbers with Applications. Springer.[Google Scholor]
  5. Adegoke, K., 2015. Infinite arctangent sums involving Fibonacci and Lucas numbers. Notes on Number Theory and Discrete Mathematics, 21(1), pp.56-66.[Google Scholor]
  6. Chu, W. and Li, N. N., 2011. Power sums of Fibonacci and Lucas numbers. Quaestiones Mathematicae, 34(1), pp.75-83.[Google Scholor]
  7. Chu, W. and Zhou, R. R., 2010. Two multiple convolutions on Fibonacci-like sequences. Fibonacci Quarterly, 48(1), pp.80-84.[Google Scholor]
  8. Hoggatt Jr, V. E. and Ruggles, I. D., 1964. A Primer for the Fibonacci Numbers-Part V. Fibonacci Quarterly, 2(1), pp.59-65.[Google Scholor]
  9. Melham, R. S. and Shannon, A. G., 1995. Inverse trigonometric and hyperbolic summation formulas involving generalized Fibonacci numbers. Fibonacci Quarterly, 33(1), pp.32-40.[Google Scholor]
  10. Chu, W., 2016. Trigonometric formulae via telescoping method. Online Journal of Analytic Combinatorics, 11, Art#6.[Google Scholor]