Bijections between compositions over finite groups

Zhicheng Gao1, Tiancheng Zhang1
1School of Mathematics and Statistics Carleton University Ottawa, Ontario Canada K1S5B6

Abstract

One may generalize integer compositions by replacing positive integers with elements from an additive group, giving the broader concept of compositions over a group. In this note, we give some simple bijections between compositions over a finite group. It follows from these bijections that the number of compositions of a nonzero group element \( g \) is independent of \( g \). As a result, we derive a simple expression for the number of compositions of any given group element. This extends an earlier result for abelian groups which was obtained using generating functions and a multivariate multisection formula.