Given a (not necessarily proper) coloring of a digraph \( c:V(D)\rightarrow\mathds{N}\), let \( OC(v)\) denote the set of colors assigned to the out-neighbors of \(v\). Similarly, let \( IC(v)\) denote the set of colors assigned to the in-neighbors of \(v\). Then \(c\) is a set coloring of \(D\) provided \((u,v) \in A(D)\) implies \( OC(u) \neq OC(v)\). Analogous to the set chromatic number of a graph given by Chartrand, \(et\) \(al.\) \([3]\), we define \( \chi_s(D) \) as the minimum number of colors required to produce a set coloring of \(D\). We find bounds for \(\chi_s(D)\) where \(D\) is a digraph and where \(D\) is a tournament. In addition we consider a second set coloring, where \((u,v) \in A(D)\) implies \( OC(u) \neq IC(v)\).