A graph \( G \) with maximum degree \( \Delta \) and edge chromatic number \( \chi'(G) > \Delta \) is \emph{edge-\(\Delta\)-critical} if \( \chi'(G-e) = \Delta \) for each \( e \in E(G) \). In this article, we provide a new proof of adjacency Lemmas on edge-critical graphs such that Vizing’s adjacency lemma becomes a corollary of our results.