Contents

On Monotonicity of Some Sequences Related to Hyperfibonacci Numbers and Hyperlucas Numbers!

Feng-Zhen Zhao1, Chun Wang2
1Department of Mathematics, Shanghai University, Shanghai 200444, China.
2School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.

Abstract

In this paper, we mainly discuss the monotonicity of some sequences related to the hyperfibonacci sequences \( \{F_{n}^{[r]}\}_{n\geq 0} \) and the hyperlucas sequences \( \{L_{n}^{[r]}\}_{n\geq 0} \), where \( r \) is a positive integer. We prove that \( \{\sqrt[n]{F_{n}^{[1]}}\}_{n\geq 1} \) and \( \{\sqrt[n]{F_{n}^{[2]}}\}_{n\geq 1} \) are unimodal and \( \{\sqrt[n]{L_{n}^{[1]}}\}_{n\geq 1} \), \( \{\sqrt[n]{F_{n+1}^{[1]}/{F_{n}^{[1]}}}\}_{n\geq 1} \), and \( \{\sqrt[n]{L_{n+1}^{[1]}/{L_{n}^{[1]}}}\}_{n\geq 2} \) are decreasing. Furthermore, we discuss the monotonicity of the sequences

\[
\left\{\frac{\sqrt[n+1]{F_{n+1}^{[1]}}}{\sqrt[n]{F_{n}^{[1]}}}\right\}_{n\geq 1} \text{ and } \left\{\frac{\sqrt[n+1]{L_{n+1}^{[1]}}}{\sqrt[n]{L_{n}^{[1]}}}\right\}_{n\geq 1}
\]