In 2004, Blinco et al [1] introduced \(\gamma\)-labeling. A function \(h\) defined on the vertex set of a graph \(G\) with \(n\) edges is called a \(\gamma\)-labeling if:
In [1] they have also proved a significant result on graph decomposition that if a graph \(G\) with \(n\) edges admits a \(\gamma\)-labeling then the complete graph \(K_{2cn+1}\) can be cyclically decomposed into \(2cn + 1\) copies of the graph \(G\), where \(c\) is any positive integer.
Motivated by the result of Blinco et al [1], in this paper, we prove that the well-known almost-bipartite graph, the grid with an additional edge, \((P_m \Box P_n) + \hat{e}\), admits \(\gamma\)-labeling. Further, we discuss a related open problem.