Let \( G \) be a \((p,q)\)-graph in which the edges are labeled \( k, k+1, \ldots, k+q-1 \), where \( k \geq 0 \). The vertex sum for a vertex \( v \) is the sum of the labels of the incident edges at \( v \). If the vertex sums are constant, modulo \( p \), then \( G \) is said to be \( k \)-edge-magic. In this paper, we investigate some classes of cubic graphs which are \( k \)-edge-magic. We also provide a counterexample to a conjecture that any cubic graph of order \( p \equiv 2 \pmod{4} \) is \( k \)-edge-magic for all \( k \).