Modified Group Divisible Designs

Ahmed Assaf 1
1Department of Algebra, Combinatorics and Analysis Auburn University

Abstract

Let \(X\) be a finite set of order \(mn\), and assume that the points of \(X\) are arranged in an array of size \(m \times n\). The columns of the array will be called groups.
In this paper we consider a new type of group divisible designs called modified group divisible designs in which each \(\{x,y\} \subseteq X\) such that \(x\) and \(y\) are neither in the same group nor in the same row occurs \(\lambda\) times. This problem was motivated by the problem of resolvable group divisible designs with \(k = 3\), \(\lambda = 2\) [1] , and other constructions of designs.