In this paper, we study a problem related to one of the Turán problems: What is the maximum number of edges in a 3-graph without a complete subgraph on five vertices, the \(K_5\)? We prove that the exact bound Turan conjectured is true if we forbid a larger class of subgraphs including \(K_5\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.