Incomplete Perfect Mendelsohn Designs

FE. Bennett1, Chen Maorong2
1 Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia B3M 236 Canada
2Department of Mathematics Suzhou University, Suzhou People’s Republic of China

Abstract

Let \(v, k\), and \(n\) be positive integers. An incomplete perfect Mendelsohn design, denoted by \(k\)-IMPD\((v, n)\), is a triple \((X, Y, B)\) where \(S\) is a \(v\)-set (of points), \(Y\) is an \(n\)-subset of \(X\), and \(B\) is a collection of cyclically ordered \(k\)-subsets of \(X\) (called blocks) such that every ordered pair \((a, b) \in (X \times X) \setminus (Y \times Y)\) appears \(t\)-apart in exactly one block of \(B\) and no ordered pair \((a, b) \in Y \times Y\) appears in any block of \(B\) for any \(t\), where \(1 \leq t \leq k – 1\). In this paper, some basic necessary conditions for the existence of a \(k\)-IMPD\((v, n)\) are easily obtained, namely,
\((v – n)(v – (k – 1)n – 1) \equiv 0 \pmod{k} \quad {and} \quad v > (k – 1)n + 1.\) It is shown that these basic necessary conditions are also sufficient for the case \(k = 3\), with the one exception of \(v = 6\) and \(n = 1\). Some problems relating to embeddings of perfect Mendelsohn designs and associated quasigroups are mentioned.