On Cycle Graphs

Yoshimi EGAWA1, Mikio KANO2, Evelyn L. TAN3
1Department of Applied Mathematics Science University of Tokyo Shinjuku-ku, Tokyo 162 JAPAN
2 Akashi College of Technology Akashi 674 JAPAN
3Department of Mathematics University of the Philippines Diliman, Quezon City 1101 PHILIPPINES

Abstract

The cycle graph \(C(G)\) of a graph \(G\) has vertices which correspond to the chordless cycles of \(G\), and two vertices of \(C(G)\) are adjacent if the corresponding chordless cycles of \(G\) have at least one edge in common. If \(G\) has no cycle, then we define \(C(G)=\emptyset\), the empty graph. For an integer \(n \geq 2\), we define recursively the \(n\)-th iterated cycle graph \(C^n(G)\) by \(C^n(G)=C(C^{n-1}(G))\). We classify graphs according to their cycle graphs as follows. A graph \(G\) is \emph{cycle-vanishing} if there exists an integer \(n\) such that \(C^n(G)=\emptyset\); and \(G\) is \emph{cycle-periodic} if there exist two integers \(n\) and \(p \geq 1\) such that \(C^{n+p}(G)\cong C^n(G) \neq \emptyset\). Otherwise, \(G\) is cycle-expanding. We characterize these three types of graphs, and give some other results on cycle graphs.