On the Complexity of Coloring Irreflexive Relations

Lucien Haddad1, Vojtech Rédl2
1Department of Mathematics University of Toronto Toronto, Ontario MIC 1A4 Canada
2Emory University Atlanta, Georgia U.S.A. 30322

Abstract

Let \(\rho\) be an \(h\)-ary areflexive relation. We study the complexity of finding a strong \(h\)-coloring for \(\rho\), which is defined in the same way for \(h\)-uniform hypergraphs.In particular we reduce the \(H\)-coloring problem for graphs to this problem, where \(H\) is a graph depending on \(\rho\). We also discuss the links of this problem with the problem of
finding a completeness criterion for finite algebras.