Convex-Expansions Algorithms for Recognition and Isometric Embedding of Median Graphs

Pranava K.Jha 1, Giora Slutzki2
1AP (Computer Science) NERIST Itanagar Itanagar 791110, India
2Dept. of Computer Science Iowa State University Ames, Iowa 50011

Abstract

Let \(G = (V, E)\) be a finite, simple graph. For a triple of vertices \(u, v, w\) of \(G\), a vertex \(x\) of \(G\) is a median of \(u, v\), and \(w\) if \(x\) lies simultaneously on shortest paths joining \(u\) and \(v\), \(v\) and \(w\), and \(w\) and \(u\) respectively. \(G\) is a median graph if \(G\) is connected, and every triple of vertices of \(G\) admits a unique median. There are several characterizations of median graphs in the literature; one given by Mulder is as follows: \(G\) is a median graph if and only if \(G\) can be obtained from a one-vertex graph by a sequence of convex expansions. We present an \(O(|V|^2 \log |V|)\) algorithm for recognizing median graphs, which is based on Mulder’s convex-expansions technique. Further, we present an \(O(|V|^2 \log |V|)\) algorithm for obtaining an isometric embedding of a median graph \(G\) in a hypercube \(Q_n\) with \(n\) as small as possible.