Two Results on the Binding Numbers of Product Graphs

Wayne Goddard1, Henda C.Swart2
1Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 USA
2Department of Mathematics University of Natal 4001 Durban South Africa

Abstract

The binding number of a graph \(G \) is defined to be the minimum of \(|N(S)|/|S| \) taken over all nonempty \(S \subseteq V(G) \) such that \(N(S) \neq V(G) \). In this paper, two general results for the binding numbers of product graphs are obtained. (1) For any \(G \) on \(m \) vertices, it is shown that \( bind (G \times K_n) = \frac{nm-1}{nm-\delta(G)-n+1} \) for all \(n \) sufficiently large.(2) For arbitrary \(G \) and for \(H \) with \( bind(H) \geq 1 \), a (relatively) simple expression is derived for \( bind (G[H]) \).