In this paper we examine the existence problem for cyclic Mendelsohn quadruple systems (briefly CMQS) and we prove that a CMQS of order \(v\) exists if and only if \(v \equiv 1 \pmod{4}\). Further we study the maximum number \(m_a(v)\) of pairwise disjoint (on the same set) CMQS’s of order \(v\) each having the same \(v\)-cycle as an automorphism. We prove that, for every \(v \equiv 1 \pmod{4}\), \(2v-8 \leq m_4(v) \leq v^2 – 11v + z\), where \(z = 32\) if \(v \equiv 1\) or \(5 \pmod{12}\) and \(z = 30\) if \(v \equiv 9 \pmod{12}\), and that \(m_4(5) = 2\), \(m_4(9) = 12\), \(50 \leq m_4(13) \leq 58\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.