Distribution Properties of Induced Subgraphs of Trees

Gerd Baron 1, Michael Drmota1
1Technical University of Vienna Department of Discrete Mathematics Technical University of Vienna Wiedner HauptstraBe 8—10/118 A-1040 Vienna, Austria

Abstract

In this paper it is shown that the number of induced subgraphs (the set of edges is induced by the set of nodes) of trees of size \(n\) satisfy a central limit theorem and that multivariate asymptotic expansions can be obtained. In the case of planted plane trees, \(N\)-ary trees, and non-planar rooted labelled trees, explicit formulae can be given. Furthermore, the average size of the largest component of induced subgraphs in trees of size \(n\) is evaluated asymptotically.