It has been shown that there exists a resolvable spouse-avoiding mixed-doubles round robin tournament for any positive integer \(v \neq 2, 3, 6\) with \(27\) possible exceptions. We show that such designs exist for \(19\) of these values and the only values for which the existence is undecided are: \(10, 14, 46, 54, 58, 62, 66\), and \(70\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.