In this paper we study the existence of perfect Mendelsohn designs without repeated blocks and give several general constructions. We prove that for \(k = 3\) and any \(\lambda\), and \((k,\lambda) = (4,2),(4,3)\) and \((4,4)\), the necessary conditions are also sufficient for the existence of a simple \((v,k,\lambda)\)-PMD, with the exceptions \((k,\lambda) = (6,1)\) and \((6,3)\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.