The induced path number of a graph \(G\) is the minimum number of subsets into which the vertex set of \(G\) can be partitioned so that each subset induces a path. The induced path number is investigated for bipartite graphs. Formulas are presented for the induced path number of complete bipartite graphs and complete binary trees. The induced path number of all wheels is determined. The induced path numbers of meshes, hypercubes, and butterflies are also considered.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.