Ramsey’s Theorem implies that for any graph \(H\) there is a least integer \(r = r(H)\) such that if \(G\) is any graph of order at least \(r\) then either \(G\) or its complement contains \(H\) as a subgraph. For \(n<r\) and \(0 \leq e \leq \frac{1}{2}n(n-1)\), let \(f(e) =1\) {if every graph \(G\) of order \(n\) and size \(e\) is such that either \(G\) or \(\overline{G}\) contains \(H\),} and let \(f(e)=0\) {otherwise.} This associates with the pair \((H,n)\) a binary sequence \(S(H,n)\). By an interval of \(S(H,n)\) we mean a maximal string of equal terms. We show that there exist infinitely many pairs \((H,n)\) for which \(S(H,n)\) has seven intervals.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.