Choosability Of Bipartite Graphs

Denis Hanson1, Gary MacGillivray2, Bjarne Toft3
1 Department of Mathematics and Statistics University of Regina, Regina, Sask., Canada S4S 0A2
2 Department of Mathematics and Statistics University of Victoria, Victoria, B.C., Canada V8W 3P4
3Institut for Matematik og Datalogi Odense Universitet, DK-5230 Odense M, Denmark

Abstract

Let \(n(k)\) be the smallest number of vertices of a bipartite graph not being \(k\)-choosable. We show that \(n(3) = 14\) and moreover that \(n(k) \leq k. n(k-2)+2^k\). In particular, it follows that \(n(4) \leq 40\) and \(n(6) \leq 304\).