Two Series of \(BIB\) Designs

Roger Logan1, MK. Singh2, K. Sinha 3
1Department Of Mathematics University of Charleston Charleston, SC 29424
2 Department of Mathematics Ranchi University Ranchi-834001, India
3Department of Statistics Birsa Agricultural University Ranchi-834006, India

Abstract

In this paper, we construct two series of balanced incomplete block (BIB) designs with parameters:
\[v = \binom{2m-3}{2} ,r= \frac{(2m-5)!}{(m-1)!}, k= {m}\]
\[b=\frac{(2m-3)!}{2m(m-1)!} , \lambda = \frac{(2m-6)!}{(m-3)!}\]
and
\[v = \binom{2m+1}{2} , b = b_1(m+1), r = 2m(\overline{\lambda}_1-\overline{\lambda}_2), k = m^2\]
\[\lambda = (m-1)(\overline{\lambda}_1-2\overline{\lambda}_2+\overline{\lambda}_3)+m(\overline{\lambda}_2-\overline{\lambda}_3)\]
where \(k_1, b_1, \overline{\lambda}_i\) are parameters of a special \(4-(v, k, \lambda)\) design.