A Series of Quasi-Multiple \(BIB\) Designs from Hadamard Matrices

Kishore Sinha1, Byron Jones2, Sanpei Kageyama3
1 Department of Statistics Birsa Agricultural University Ranchi – 834006, India
2Department of Medical Statistics De Montfort. University Leicester LE1 9BH, UK
3Department of Mathematics Hiroshima University Higashi-Hiroshima 739-8524, Japan

Abstract

A method of construction of quasi-multiple balanced incomplete block \((BIB)\) designs from certain group divisible designs is described. This leads to a series of quasi-multiple designs of symmetric BIB designs and new non-isomorphic solutions of designs listed as unknown in the tables of Mathon and Rosa \([{3,4}]\). In the process a series of semi-regular group divisible designs is also obtained.