Let \(G\) be a simple graph of order \(n\) having a maximum matching \(M\). The deficiency \( def(G)\) of \(G\) is the number of vertices unsaturated by \(M\). In this paper, we find lower bounds for \(n\) when \( def(G)\) and the minimum degree (or maximum degree) of vertices are given. Further, for every \(n\) not less than the bound and of the same parity as \( def(G)\), there exists a graph \(G\) with the given deficiency and minimum (maximum) degree.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.