Minus \(k\)-subdomination in Graphs

Izak Broere1, Jean E.Dunbar2, Johannes H.Hattingh3
1 Department of Mathematics Rand Afrikaans University Auckland Park, South Africa
2Department of Mathematics Converse College Spartanburg South Carolina, U.S. A.
3Department of Mathematics Rand Afrikaans University Auckland Park, South Africa

Abstract

Let \(G = (V, E)\) be a graph and \(k \in \mathbb{Z}^+\) such that \(1 \leq k \leq |V|\). A \(k\)-subdominating function (KSF) to \(\{-1, 0, 1\}\) is a function \(f: V \to \{-1, 0, 1\}\) such that the closed neighborhood sum \(f(N[v]) \geq 1\) for at least \(k\) vertices of \(G\). The weight of a KSF \(f\) is \(f(V) = \sum_{v \in V} f(v)\). The \(k\)-subdomination number to \(\{-1, 0, 1\}\) of a graph \(G\), denoted by \(\gamma^{-101}_{k_s}(G)\), equals the minimum weight of a KSF of \(G\). In this paper, we characterize minimal KSF’s, calculate \(\gamma^{-101}_{k_s}(G)\) for an arbitrary path \(P_n\), and determine the least order of a connected graph \(G\) for which \(\gamma^{-101}_{k_s}(G)=-m\) for an arbitrary positive integer \(m\).