Let \(T = (V, E)\) be a tree on \(|V| = n\) vertices. \(T\) is graceful if there exists a bijection \(f : V \to \{0,1,\dots, n-1\}\) such that \(\{|f(u) – f(v)| \mid uv \in E\} = \{1,2,\dots,n-1\}\). If, moreover, \(T\) contains a perfect matching \(M\) and \(f\) can be chosen in such a way that \(f(u) + f(v) = n-1\) for every edge \(uv \in M\) (implying that \(\{|f(u) – f(v)| \mid uv \in M\} = \{1,3,\dots,n-1\}\)), then \(T\) is called strongly graceful. We show that the well-known conjecture that all trees are graceful is equivalent to the conjecture that all trees containing a perfect matching are strongly graceful. We also give some applications of this result.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.