A graph is well-covered if it has no isolated vertices and all the maximal independent sets have the same cardinality. If furthermore this cardinality is exactly half the number of vertices, the graph is called very well covered. Sankaranarayana in \({[5]}\) presented a certain subclass of well covered graphs (called Wan) and gave a characterization of this class which generalized the characterization of very well covered graphs given by Favaron \([2]\) . The purpose of this article is to generalize to this new subclass some results concerning the stability, domination, and irredundance parameters proved for very well covered graphs in \([2]\) .
1970-2025 CP (Manitoba, Canada) unless otherwise stated.