Infinite Designs with More Point Orbits than Block Orbits

Bridget S.Webb1
1Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

Abstract

Block’s Lemma states that every automorphism group of a finite \(2-(v,k,\lambda)\) design acts with at least as many block orbits as point orbits: this is not the case for infinite designs. Evans constructed a block transitive \(2-(v,4,14)\) design with two point orbits using ideas from model theory and Camina generalized this method to construct a family of block transitive designs with two point orbits. In this paper, we generalize the method further to construct designs with \(n\) point orbits and \(l\) block orbits with \(l < n\), where both \(n\) and \(l\) are finite. In particular, we prove that for \(k \geq 4\) and \(n \leq k/2\), there exists a block transitive \(2-(v,k,\lambda)\) design, for some finite \(\lambda\), with \(n\) point orbits. We also construct \(2-(v, 4, \lambda)\) designs with automorphism groups acting with \(n\) point orbits and \(l\) block orbits, \(l < n\), for every permissible pair \((n, l)\).