Bailey (1989) defined a \(k \times v\) double Youden rectangle (DYR), with \(k 3\) is a prime power with \(k \equiv 3 \pmod{4}\). We now provide a general construction for DYRs of sizes \(k \times (2k+1)\) where \(k > 5\) is a prime power with \(k \equiv 1 \pmod{4}\). We present DYRs of sizes \(9 \times 19\) and \(13 \times 27\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.