Let \(K^d_n\) be the product of \(d\) copies of the complete graph \(K_4\). Wojciechowski [4] proved that for any \(d \geq 2\) the hypercube \(K^d_2\) can be vertex covered with at most \(16\) disjoint snakes. We show that for any odd integer \(n \geq 3\), \(d \geq 2\) the graph \(K^d_n\) can be vertex covered with \(2n^3\) snakes.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.