In this paper we extend the definition of pseudograceful graphs given by Frucht [3] to all graphs \(G\) with vertex set \(V(G)\) and edge set \(E(G)\) such that
\(|V(G)| \leq |E(G)| + 1\) and we prove that if \(G\) is a pseudograceful graph, then \(G \cup K_{m,n}\).is pseudograceful
for \(m,n \geq 2\) and \((m,n) \neq (2,2)\) and is graceful for \(m,n \geq 2\). This enables us to obtain several new families of graceful and disconnected graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.