On the Hull Number of a Graph

Gary Chartrand1, Frank Harary2, Ping Zhang3
1Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008, USA
2Department of Computer Science New Mexico State University Las Cruces, NM 88003, USA
3Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008, USA

Abstract

For two vertices \(u\) and \(v\) of a connected graph \(G\), the set \(H(u, v)\) consists of all those vertices lying on a \(u-v\) geodesic in \(G\). Given a set \(S\) of vertices of \(G\), the union of all sets \(H(u,v)\) for \(u,v \in S\) is denoted by \(H(S)\). A convex set \(S\) satisfies \(H(S) = S\). The convex hull \([S]\) is the smallest convex set containing \(S\). The hull number \(h(G)\) is the minimum cardinality among the subsets \(S\) of \(V(G)\) with \([S] = V(G)\). When \(H(S) = V(G)\), we call \(S\) a geodetic set. The minimum cardinality of a geodetic set is the geodetic number \(g(G)\). It is shown that every two integers \(a\) and \(b\) with \(2 \leq a \leq b\) are realizable as the hull and geodetic numbers, respectively, of some graph. For every nontrivial connected graph \(G\), we find that \(h(G) = h(G \times K_2)\). A graph \(F\) is a minimum hull subgraph if there exists a graph \(G\) containing \(F\) as induced subgraph such that \(V(F)\) is a minimum hull set for \(G\). Minimum hull subgraphs are characterized.