Multipartite Ramsey Numbers

David Day1, Wayne Goddard2, Michael A. Henning3, Henda C. Swart4
1Department of Mathematics Technikon Natal, Durban South Africa
2 School of Geological and Computer Sciences University of Natal, Durban South Africa
3School of Mathematics, Computer Science and Information Technology University of Natal, Pietermaritzburg South Africa
4School of Mathematics and Statistics University of Natal, Durban South Africa

Abstract

For a graph \(G\), a partiteness \(k \geq 2\) and a number of colours \(c\), we define the multipartite Ramsey number \(r^c_k(G)\) as the minimum value \(m\) such that, given any colouring using \(c\) colours of the edges of the complete balanced \(k\)-partite graph with \(m\) vertices in each partite set, there must exist a monochromatic copy of \(G\). We show that the question of the existence of \(r^c_k(G)\) is tied up with what monochromatic subgraphs are forced in a \(c\)-colouring of the complete graph \(K_k\). We then calculate the values for some small \(G\) including \(r^2_3(C_4) = 3, r^2_4(C_4) = 2, r^3_3(C_4) = 7\) and \(r^2_3(C_6) = 3\).