A given nonincreasing sequence \(\mathcal D = (d_1, d_2, \dots, d_n)\) is said to contain a (nonincreasing) repetition sequence \(\mathcal D ^* = (d_{i_1},d_{i_2} \dots, d_{i_k})\) for some \(k \leq n – 2\) if all values of \(\mathcal D – \mathcal D ^*\) are distinct and for any \(d_{i_i} \in \mathcal D ^*\), there exists some \(d_t \in \mathcal D – \mathcal D ^*\) such that \(d_{i_1} = d_t\). For any pair of integers \(n\) and \(k\) with \(n \geq k + 2\), we investigate the existence of a graphic sequence which contains a given repetition sequence. Our main theorem contains the known results for the special case \(d_{i_1} = d_{i_k}\) if \(k = 1\) or \(k = 2\) (see [1, 5, 2]).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.