Some Classes of Extended Mendelsohn Triple Systems and Numbers of Common Blocks

Kuo-Bing Huang1, Wen-Chung Huang1, Chia-Chin Hung1, Guei-Hua Wang1
1Department of Mathematics Soochow University Taipei, Taiwan, Republic of China.

Abstract

An extended Mendelsohn triple system of order \(v\) with a idempotent element (EMTS(\(v, a\))) is a collection of cyclically ordered triples of the type \(\{x, y, z\}\), \(\{x, x, y\}\) or \(\{x, x, x\}\) chosen from a \(v\)-set, such that every ordered pair (not necessarily distinct) belongs to only one triple and there are \(a\) triples of the type \(\{x, x, x\}\). If such a design with parameters \(v\) and \(a\) exist, then they will have \(b_{v,a}\) blocks, where \(b_{v,a} = (v^2 + 2a)/3\). A necessary and sufficient condition for the existence of EMTS(\(v, 0\)) and EMTS(\(v, 1\)) are \(v \equiv 0\) (mod \(3\)) and \(v \not\equiv 0\) (mod \(3\)), respectively. In this paper, we have constructed two EMTS(\(v, 0\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v, 0} – 3, b_{v, 0}\}\), for \(v \equiv 0\) (mod \(3\)). Secondly, we have constructed two EMTS(\(v, 1\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v, 1} – 2, b_{v, 1}\}\), for \(v \not\equiv 0\) (mod \(3\)).