A transversal cover is a set of \(gk\) points in \(k\) disjoint groups of size \(g\) and, ideally, a minimal collection of transversal subsets, called blocks, such that any pair of points not contained in the same group appears in at least one block. In this article we present a direct construction method for transversal covers using group divisible designs. We also investigate a particular infinite family of group divisible designs that yield particularly good covers.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.